Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Circ Res ; 132(10): 1272-1289, 2023 05 12.
Article in English | MEDLINE | ID: covidwho-2319061

ABSTRACT

COVID-19 is characterized by dysregulated thrombosis and coagulation that can increase mortality in patients. Platelets are fast responders to pathogen presence, alerting the surrounding immune cells and contributing to thrombosis and intravascular coagulation. The SARS-CoV-2 genome has been found in platelets from patients with COVID-19, and its coverage varies according to the method of detection, suggesting direct interaction of the virus with these cells. Antibodies against Spike and Nucleocapsid have confirmed this platelet-viral interaction. This review discusses the immune, prothrombotic, and procoagulant characteristics of platelets observed in patients with COVID-19. We outline the direct and indirect interaction of platelets with SARS-CoV-2, the contribution of the virus to programmed cell death pathway activation in platelets and the consequent extracellular vesicle release. We discuss platelet activation and immunothrombosis in patients with COVID-19, the effect of Spike on platelets, and possible activation of platelets by classical platelet activation triggers as well as contribution of platelets to complement activation. As COVID-19-mediated thrombosis and coagulation are still not well understood in vivo, we discuss available murine models and mouse adaptable strains.


Subject(s)
COVID-19 , Thrombosis , Mice , Animals , COVID-19/metabolism , SARS-CoV-2 , Blood Platelets/metabolism , Platelet Activation
2.
Ann Hematol ; 102(6): 1307-1322, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2303196

ABSTRACT

The coagulation, fibrinolytic, anticoagulation, and complement systems are in delicate balance with the vessel wall endothelium ensuring appropriate hemostasis. Coagulopathy in coronavirus disease 2019 (COVID-19) is not a simple disorder of one hemostatic component but a complicated process affecting most of the hemostasis system. COVID-19 disturbs the balance between the procoagulant systems and the regulatory mechanisms. Here, we investigate the effect of COVID-19 on key hemostatic components, including platelets, endothelial cells, coagulation factors, fibrinolytic system, anticoagulant protein system, and complement system, to improve our understanding of the pathophysiological processes underlying COVID-19 coagulopathy based on evidence.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Hemostatics , Humans , Hemostatics/pharmacology , Endothelial Cells/metabolism , Hemostasis , Blood Coagulation Factors/metabolism , Blood Platelets/metabolism , Endothelium, Vascular/metabolism , Fibrinolysis
3.
Platelets ; 34(1): 2200847, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2295721

ABSTRACT

Ischemic cardiovascular and venous thromboembolic events are a frequent cause of death in severe COVID-19 patients. Platelet activation plays a key role in these complications, however platelet lipidomics have not been studied yet. The aim of our pilot investigation was to perform a preliminary study of platelet lipidomics in COVID-19 patients compared to healthy subjects. Lipid extraction and identification of ultrapurified platelets from eight hospitalized COVID-19 patients and eight age- and sex-matched healthy controls showed a lipidomic pattern almost completely separating COVID-19 patients from healthy controls. In particular, a significant decrease of ether phospholipids and increased levels of ganglioside GM3 were observed in platelets from COVID-19 patients. In conclusion, our study shows for the first time that platelets from COVID-19 patients display a different lipidomics signature distinguishing them from healthy controls, and suggests that altered platelet lipid metabolism may play a role in viral spreading and in the thrombotic complications of COVID-19.


What is the context? Besides respiratory system involvement, venous thromboembolism is a severe complication of COVID-19, largely due to the strong derangement of hemostasis, with platelets playing a central role.Great attention has recently been devoted to lipid alterations in COVID-19, both because viruses by reprogramming cellular lipid metabolism remodel lipid membranes to fuel their replication, and because the COVID-19-associated cytokine storm may affect cell/plasma lipidomic signatures.Lipidomics studies in COVID-19 patients have been performed mainly in plasma and serum.To the best of our knowledge, platelet lipidomics have not been examined despite the central role played by platelets in COVID-19 complications.What is the aim of the study?The aim of our pilot study was to preliminarily explore whether platelet lipidomics is altered in COVID-19 patients compared to age- and sex-matched healthy subjects, analyzing lipidomic profile of ultrapurified platelets.What are the results of our study? Our study shows for the first time that platelets from COVID-19 patients display a different lipidomics signature distinguishing them from healthy controls.Ether phospholipids and, intriguingly, two phytoceramides were lower, while ganglioside GM3 was higher in COVID-19 samples compared to healthy controls.What is the impact?Despite the small number of COVID-19 patients enrolled, recognized as a limitation of our study, we show, for the first time, that platelets from COVID-19 patients present a different lipidomics signature and suggest that altered platelet lipid metabolism may play a significant role in viral spreading and in the thrombotic complications of COVID-19.


Subject(s)
COVID-19 , Thrombosis , Humans , COVID-19/metabolism , Lipidomics , Blood Platelets/metabolism , Platelet Activation , Thrombosis/metabolism
4.
Int J Mol Sci ; 24(7)2023 Apr 04.
Article in English | MEDLINE | ID: covidwho-2294719

ABSTRACT

P2Y12 is a G-protein-coupled receptor that is activated upon ADP binding. Considering its well-established role in platelet activation, blocking P2Y12 has been used as a therapeutic strategy for antiplatelet aggregation in cardiovascular disease patients. However, receptor studies have shown that P2Y12 is functionally expressed not only in platelets and the microglia but also in other cells of the immune system, such as in monocytes, dendritic cells, and T lymphocytes. As a result, studies were carried out investigating whether therapies targeting P2Y12 could also ameliorate inflammatory conditions, such as sepsis, rheumatoid arthritis, neuroinflammation, cancer, COVID-19, atherosclerosis, and diabetes-associated inflammation in animal models and human subjects. This review reports what is known about the expression of P2Y12 in the cells of the immune system and the effect of P2Y12 activation and/or inhibition in inflammatory conditions. Lastly, we will discuss the major problems and challenges in studying this receptor and provide insights on how they can be overcome.


Subject(s)
COVID-19 , Receptors, Purinergic P2 , Animals , Humans , Purinergic P2Y Receptor Antagonists/pharmacology , Purinergic P2Y Receptor Antagonists/therapeutic use , COVID-19/metabolism , Blood Platelets/metabolism , Signal Transduction , Immune System , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2Y12/genetics , Receptors, Purinergic P2Y12/metabolism , Platelet Aggregation , Platelet Aggregation Inhibitors/pharmacology , Adenosine Diphosphate/metabolism
5.
PLoS One ; 18(3): e0282785, 2023.
Article in English | MEDLINE | ID: covidwho-2282344

ABSTRACT

BACKGROUND: The increased procoagulant platelets and platelet activation are associated with thrombosis in COVID-19. In this study, we investigated platelet activation in COVID-19 patients and their association with other disease markers. METHODS: COVID-19 patients were classified into three severity groups: no pneumonia, mild-to-moderate pneumonia, and severe pneumonia. The expression of P-selectin and activated glycoprotein (aGP) IIb/IIIa on the platelet surface and platelet-leukocyte aggregates were measured prospectively on admission days 1, 7, and 10 by flow cytometry. RESULTS: P-selectin expression, platelet-neutrophil, platelet-lymphocyte, and platelet-monocyte aggregates were higher in COVID-19 patients than in uninfected control individuals. In contrast, aGPIIb/IIIa expression was not different between patients and controls. Severe pneumonia patients had lower platelet-monocyte aggregates than patients without pneumonia and patients with mild-to-moderate pneumonia. Platelet-neutrophil and platelet-lymphocyte aggregates were not different among groups. There was no change in platelet-leukocyte aggregates and P-selectin expression on days 1, 7, and 10. aGPIIb/IIIa expression was not different among patient groups. Still, adenosine diphosphate (ADP)-induced aGPIIb/IIIa expression was lower in severe pneumonia than in patients without and with mild-to-moderate pneumonia. Platelet-monocyte aggregates exhibited a weak positive correlation with lymphocyte count and weak negative correlations with interleukin-6, D-dimer, lactate dehydrogenase, and nitrite. CONCLUSION: COVID-19 patients have higher platelet-leukocyte aggregates and P-selectin expression than controls, indicating increased platelet activation. Compared within patient groups, platelet-monocyte aggregates were lower in severe pneumonia patients.


Subject(s)
COVID-19 , P-Selectin , Humans , P-Selectin/metabolism , Monocytes/metabolism , COVID-19/metabolism , Blood Platelets/metabolism , Platelet Activation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Flow Cytometry , Platelet Aggregation
6.
J Renin Angiotensin Aldosterone Syst ; 2023: 7550197, 2023.
Article in English | MEDLINE | ID: covidwho-2273653

ABSTRACT

Thrombocytes (platelets) are the type of blood cells that are involved in hemostasis, thrombosis, etc. For the conversion of megakaryocytes into thrombocytes, the thrombopoietin (TPO) protein is essential which is encoded by the TPO gene. TPO gene is present in the long arm of chromosome number 3 (3q26). This TPO protein interacts with the c-Mpl receptor, which is present on the outer surface of megakaryocytes. As a result, megakaryocyte breaks into the production of functional thrombocytes. Some of the evidence shows that the megakaryocytes, the precursor of thrombocytes, are seen in the lung's interstitium. This review focuses on the involvement of the lungs in the production of thrombocytes and their mechanism. A lot of findings show that viral diseases, which affect the lungs, cause thrombocytopenia in human beings. One of the notable viral diseases is COVID-19 or severe acute respiratory syndrome caused by SARS-associated coronavirus 2 (SARS-CoV-2). SARS-CoV-2 caused a worldwide alarm in 2019 and a lot of people suffered because of this disease. It mainly targets the lung cells for its replication. To enter the cells, these virus targets the angiotensin-converting enzyme-2 (ACE-2) receptors that are abundantly seen on the surface of the lung cells. Recent reports of COVID-19-affected patients reveal the important fact that these peoples develop thrombocytopenia as a post-COVID condition. This review elaborates on the biogenesis of platelets in the lungs and the alterations of thrombocytes during the COVID-19 infection.


Subject(s)
COVID-19 , Thrombocytopenia , Humans , Blood Platelets/metabolism , COVID-19/metabolism , SARS-CoV-2 , Lung , Thrombocytopenia/complications , Thrombocytopenia/genetics , Thrombocytopenia/metabolism
7.
Semin Thromb Hemost ; 49(3): 305-313, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2272949

ABSTRACT

Plasminogen activator inhibitor 1 (PAI-1), a SERPIN inhibitor, is primarily known for its regulation of fibrinolysis. However, it is now known that this inhibitor functions and contributes to many (patho)physiological processes including inflammation, wound healing, cell adhesion, and tumor progression.This review discusses the past, present, and future roles of PAI-1, with a particular focus on the discovery of this inhibitor in the 1970s and subsequent characterization in health and disease. Throughout the past few decades diverse functions of this serpin have unraveled and it is now considered an important player in many disease processes. PAI-1 is expressed by numerous cell types, including megakaryocytes and platelets, adipocytes, endothelial cells, hepatocytes, and smooth muscle cells. In the circulation PAI-1 exists in two pools, within plasma itself and in platelet α-granules. Platelet PAI-1 is secreted following activation with retention of the inhibitor on the activated platelet membrane. Furthermore, these anucleate cells contain PAI-1 messenger ribonucleic acid to allow de novo synthesis.Outside of the traditional role of PAI-1 in fibrinolysis, this serpin has also been identified to play important roles in metabolic syndrome, obesity, diabetes, and most recently, acute respiratory distress syndrome, including coronavirus disease 2019 disease. This review highlights the complexity of PAI-1 and the requirement to ascertain a better understanding on how this complex serpin functions in (patho)physiological processes.


Subject(s)
COVID-19 , Serpins , Humans , Blood Platelets/metabolism , COVID-19/metabolism , Endothelial Cells/metabolism , Fibrinolysis , Plasminogen Activator Inhibitor 1/physiology , Serpins/metabolism
8.
Int J Mol Sci ; 24(6)2023 Mar 10.
Article in English | MEDLINE | ID: covidwho-2270014

ABSTRACT

Several studies report elevated blood platelet activation and altered platelet count in COVID-19 patients, but the role of the SARS-CoV-2 spike protein in this process remains intriguing. Additionally, there is no data that anti-SARS-CoV-2 neutralizing antibodies (nAb) may attenuate spike protein activity toward blood platelets. Our results indicate that under in vitro conditions, the spike protein increased the collagen-stimulated aggregation of isolated platelets and induced the binding of vWF to platelets in ristocetin-treated blood. The spike protein also significantly reduced collagen- or ADP-induced aggregation or decreased GPIIbIIIa (fibrinogen receptor) activation in whole blood, depending on the presence of the anti-spike protein nAb. Our findings suggest that studies on platelet activation/reactivity in COVID-19 patients or in donors vaccinated with anti-SARS-CoV-2 and/or previously-infected COVID-19 should be supported by measurements of spike protein and IgG anti-spike protein antibody concentrations in blood.


Subject(s)
COVID-19 , Humans , COVID-19/metabolism , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/metabolism , Blood Platelets/metabolism , Antibodies, Viral , Antibodies, Neutralizing
9.
Expert Rev Hematol ; 15(8): 727-745, 2022 08.
Article in English | MEDLINE | ID: covidwho-2258639

ABSTRACT

INTRODUCTION: COVID-19 is associated to an increased risk of thrombosis, as a result of a complex process that involves the activation of vascular and circulating cells, the release of soluble inflammatory and thrombotic mediators and blood clotting activation. AREAS COVERED: This article reviews the pathophysiological role of platelets, neutrophils, and the endothelium, and of their interactions, in the thrombotic complications of COVID-19 patients, and the current and future therapeutic approaches targeting these cell types. EXPERT OPINION: Virus-induced platelet, neutrophil, and endothelial cell changes are crucial triggers of the thrombotic complications and of the adverse evolution of COVID-19. Both the direct interaction with the virus and the associated cytokine storm concur to trigger cell activation in a classical thromboinflammatory vicious circle. Although heparin has proven to be an effective prophylactic and therapeutic weapon for the prevention and treatment of COVID-19-associated thrombosis, it acts downstream of the cascade of events triggered by SARS-CoV-2. The identification of specific molecular targets interrupting the thromboinflammatory cascade upstream, and more specifically acting either on the interaction of SARS-CoV-2 with blood and vascular cells or on the specific signaling mechanisms associated with their COVID-19-associated activation, might theoretically offer greater protection with potentially lesser side effects.


Subject(s)
COVID-19 , Thrombosis , Blood Platelets/metabolism , COVID-19/complications , Endothelium/metabolism , Humans , Neutrophils/metabolism , SARS-CoV-2 , Thrombosis/etiology , Thrombosis/metabolism
10.
Front Immunol ; 14: 1130288, 2023.
Article in English | MEDLINE | ID: covidwho-2259138

ABSTRACT

Introduction: Thromboinflammatory complications are well described sequalae of Coronavirus Disease 2019 (COVID-19), and there is evidence of both hyperreactive platelet and inflammatory neutrophil biology that contributes to the thromoinflammatory milieu. It has been demonstrated in other thromboinflammatory diseases that the circulating environment may affect cellular behavior, but what role this environment exerts on platelets and neutrophils in COVID-19 remains unknown. We tested the hypotheses that 1) plasma from COVID-19 patients can induce a prothrombotic platelet functional phenotype, and 2) contents released from platelets (platelet releasate) from COVID-19 patients can induce a proinflammatory neutrophil phenotype. Methods: We treated platelets with COVID-19 patient and disease control plasma, and measured their aggregation response to collagen and adhesion in a microfluidic parallel plate flow chamber coated with collagen and thromboplastin. We exposed healthy neutrophils to platelet releasate from COVID-19 patients and disease controls and measured neutrophil extracellular trap formation and performed RNA sequencing. Results: We found that COVID-19 patient plasma promoted auto-aggregation, thereby reducing response to further stimulation ex-vivo. Neither disease condition increased the number of platelets adhered to a collagen and thromboplastin coated parallel plate flow chamber, but both markedly reduced platelet size. COVID-19 patient platelet releasate increased myeloperoxidasedeoxyribonucleic acid complexes and induced changes to neutrophil gene expression. Discussion: Together these results suggest aspects of the soluble environment circulating platelets, and that the contents released from those neutrophil behavior independent of direct cellular contact.


Subject(s)
Blood Platelets , COVID-19 , Humans , Blood Platelets/metabolism , Neutrophils/metabolism , COVID-19/metabolism , Thromboplastin/metabolism , Collagen/metabolism
11.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2269622

ABSTRACT

SARS-CoV-2 infection causes a considerable inflammatory response coupled with impaired platelet reactivity, which can lead to platelet disorders recognized as negative prognostic factors in COVID-19 patients. The virus may cause thrombocytopenia or thrombocytosis during the different disease stages by destroying or activating platelets and influencing platelet production. While it is known that several viruses can impair megakaryopoiesis by generating an improper production and activation of platelets, the potential involvement of SARS-CoV-2 in affecting megakaryopoiesis is poorly understood. To this purpose, we explored, in vitro, the impact of SARS-CoV-2 stimulation in the MEG-01 cell line, a human megakaryoblastic leukemia cell line, considering its spontaneous capacity of releasing platelet-like particles (PLPs). We interrogated the effect of heat-inactivated SARS-CoV-2 lysate in the release of PLPs and activation from MEG-01, the signaling pathway influenced by SARS-CoV-2, and the functional effect on macrophagic skewing. The results highlight the potential influence of SARS-CoV-2 in the early stages of megakaryopoiesis by enhancing the production and activation of platelets, very likely due to the impairment of STATs signaling and AMPK activity. Overall, these findings provide new insight into the role of SARS-CoV-2 in affecting megakaryocyte-platelet compartment, possibly unlocking another avenue by which SARS-CoV-2 moves.


Subject(s)
Blood Platelets , COVID-19 , Humans , Blood Platelets/metabolism , SARS-CoV-2 , COVID-19/metabolism , Megakaryocytes/metabolism , Cell Line
13.
Thromb Haemost ; 123(2): 231-244, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2234961

ABSTRACT

BACKGROUND: Monocyte-platelet aggregates (MPAs) represent the crossroads between thrombosis and inflammation, and targeting this axis may suppress thromboinflammation. While antiplatelet therapy (APT) reduces platelet-platelet aggregation and thrombosis, its effects on MPA and platelet effector properties on monocytes are uncertain. OBJECTIVES: To analyze the effect of platelets on monocyte activation and APT on MPA and platelet-induced monocyte activation. METHODS: Agonist-stimulated whole blood was incubated in the presence of P-selectin, PSGL1, PAR1, P2Y12, GP IIb/IIIa, and COX-1 inhibitors and assessed for platelet and monocyte activity via flow cytometry. RNA-Seq of monocytes incubated with platelets was used to identify platelet-induced monocyte transcripts and was validated by RT-qPCR in monocyte-PR co-incubation ± APT. RESULTS: Consistent with a proinflammatory platelet effector role, MPAs were increased in patients with COVID-19. RNA-Seq revealed a thromboinflammatory monocyte transcriptome upon incubation with platelets. Monocytes aggregated to platelets expressed higher CD40 and tissue factor than monocytes without platelets (p < 0.05 for each). Inhibition with P-selectin (85% reduction) and PSGL1 (87% reduction) led to a robust decrease in MPA. P2Y12 and PAR1 inhibition lowered MPA formation (30 and 21% reduction, p < 0.05, respectively) and decreased monocyte CD40 and TF expression, while GP IIb/IIIa and COX1 inhibition had no effect. Pretreatment of platelets with P2Y12 inhibitors reduced the expression of platelet-mediated monocyte transcription of proinflammatory SOCS3 and OSM. CONCLUSIONS: Platelets skew monocytes toward a proinflammatory phenotype. Among traditional APTs, P2Y12 inhibition attenuates platelet-induced monocyte activation.


Subject(s)
COVID-19 , Thrombosis , Humans , Blood Platelets/metabolism , Inflammation/metabolism , Monocytes/metabolism , P-Selectin/metabolism , Platelet Activation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Membrane Glycoprotein IIb/metabolism , Receptor, PAR-1/metabolism , Thrombosis/metabolism
14.
Nat Commun ; 14(1): 620, 2023 02 04.
Article in English | MEDLINE | ID: covidwho-2232131

ABSTRACT

SARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic. Its high pathogenicity is due to SARS-CoV-2 spike protein (S protein) contacting host-cell receptors. A critical hallmark of COVID-19 is the occurrence of coagulopathies. Here, we report the direct observation of the interactions between S protein and platelets. Live imaging shows that the S protein triggers platelets to deform dynamically, in some cases, leading to their irreversible activation. Cellular cryo-electron tomography reveals dense decorations of S protein on the platelet surface, inducing filopodia formation. Hypothesizing that S protein binds to filopodia-inducing integrin receptors, we tested the binding to RGD motif-recognizing platelet integrins and find that S protein recognizes integrin αvß3. Our results infer that the stochastic activation of platelets is due to weak interactions of S protein with integrin, which can attribute to the pathogenesis of COVID-19 and the occurrence of rare but severe coagulopathies.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Blood Platelets/metabolism , Pandemics
15.
J Thromb Haemost ; 21(5): 1307-1321, 2023 05.
Article in English | MEDLINE | ID: covidwho-2230493

ABSTRACT

BACKGROUND: Patients with COVID-19 are at increased risk of thrombosis, which is associated with altered platelet function and coagulopathy, contributing to excess mortality. OBJECTIVES: To characterize the mechanism of altered platelet function in COVID-19 patients. METHODS: The platelet proteome, platelet functional responses, and platelet-neutrophil aggregates were compared between patients hospitalized with COVID-19 and healthy control subjects using tandem mass tag proteomic analysis, Western blotting, and flow cytometry. RESULTS: COVID-19 patients showed a different profile of platelet protein expression (858 altered of the 5773 quantified). Levels of COVID-19 plasma markers were enhanced in the platelets of COVID-19 patients. Gene ontology pathway analysis demonstrated that the levels of granule secretory proteins were raised, whereas those of platelet activation proteins, such as the thrombopoietin receptor and protein kinase Cα, were lowered. Basally, platelets of COVID-19 patients showed enhanced phosphatidylserine exposure, with unaltered integrin αIIbß3 activation and P-selectin expression. Agonist-stimulated integrin αIIbß3 activation and phosphatidylserine exposure, but not P-selectin expression, were decreased in COVID-19 patients. COVID-19 patients had high levels of platelet-neutrophil aggregates, even under basal conditions, compared to controls. This association was disrupted by blocking P-selectin, demonstrating that platelet P-selectin is critical for the interaction. CONCLUSIONS: Overall, our data suggest the presence of 2 platelet populations in patients with COVID-19: one of circulating platelets with an altered proteome and reduced functional responses and another of P-selectin-expressing neutrophil-associated platelets. Platelet-driven thromboinflammation may therefore be one of the key factors enhancing the risk of thrombosis in COVID-19 patients.


Subject(s)
COVID-19 , Thrombosis , Humans , Proteome/metabolism , COVID-19/complications , Proteomics , Phosphatidylserines/metabolism , Inflammation/metabolism , Thrombosis/etiology , Blood Platelets/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Activation , Selectins/metabolism
16.
Circ Res ; 132(3): 290-305, 2023 02 03.
Article in English | MEDLINE | ID: covidwho-2194410

ABSTRACT

BACKGROUND: SARS-CoV-2 is associated with an increased risk of venous and arterial thrombosis, but the underlying mechanism is still unclear. METHODS: We performed a cross-sectional analysis of platelet function in 25 SARS-CoV-2 and 10 healthy subjects by measuring Nox2 (NADPH oxidase 2)-derived oxidative stress and thromboxane B2, and investigated if administration of monoclonal antibodies against the S protein (Spike protein) of SARS-CoV-2 affects platelet activation. Furthermore, we investigated in vitro if the S protein of SARS-CoV-2 or plasma from SARS-CoV-2 enhanced platelet activation. RESULTS: Ex vivo studies showed enhanced platelet Nox2-derived oxidative stress and thromboxane B2 biosynthesis and under laminar flow platelet-dependent thrombus growth in SARS-CoV-2 compared with controls; both effects were lowered by Nox2 and TLR4 (Toll-like receptor 4) inhibitors. Two hours after administration of monoclonal antibodies, a significant inhibition of platelet activation was observed in patients with SARS-CoV-2 compared with untreated ones. In vitro study showed that S protein per se did not elicit platelet activation but amplified the platelet response to subthreshold concentrations of agonists and functionally interacted with platelet TLR4. A docking simulation analysis suggested that TLR4 binds to S protein via three receptor-binding domains; furthermore, immunoprecipitation and immunofluorescence showed S protein-TLR4 colocalization in platelets from SARS-CoV-2. Plasma from patients with SARS-CoV-2 enhanced platelet activation and Nox2-related oxidative stress, an effect blunted by TNF (tumor necrosis factor) α inhibitor; this effect was recapitulated by an in vitro study documenting that TNFα alone promoted platelet activation and amplified the platelet response to S protein via p47phox (phagocyte oxidase) upregulation. CONCLUSIONS: The study identifies 2 TLR4-dependent and independent pathways promoting platelet-dependent thrombus growth and suggests inhibition of TLR4. or p47phox as a tool to counteract thrombosis in SARS-CoV-2.


Subject(s)
COVID-19 , Thrombosis , Humans , Antibodies, Monoclonal/pharmacology , Blood Platelets/metabolism , COVID-19/metabolism , Cross-Sectional Studies , SARS-CoV-2 , Thrombosis/etiology , Thrombosis/metabolism , Thromboxanes/metabolism , Thromboxanes/pharmacology , Toll-Like Receptor 4/metabolism
17.
Shock ; 57(1): 1-6, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-2191212

ABSTRACT

BACKGROUND: The pathomechanisms of hypoxemia and treatment strategies for type H and type L acute respiratory distress syndrome (ARDS) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced coronavirus disease 2019 (COVID-19) have not been elucidated. MAIN TEXT: SARS-CoV-2 mainly targets the lungs and blood, leading to ARDS, and systemic thrombosis or bleeding. Angiotensin II-induced coagulopathy, SARS-CoV-2-induced hyperfibrin(ogen)olysis, and pulmonary and/or disseminated intravascular coagulation due to immunothrombosis contribute to COVID-19-associated coagulopathy. Type H ARDS is associated with hypoxemia due to diffuse alveolar damage-induced high right-to-left shunts. Immunothrombosis occurs at the site of infection due to innate immune inflammatory and coagulofibrinolytic responses to SARS-CoV-2, resulting in microvascular occlusion with hypoperfusion of the lungs. Lung immunothrombosis in type L ARDS results from neutrophil extracellular traps containing platelets and fibrin in the lung microvasculature, leading to hypoxemia due to impaired blood flow and a high ventilation/perfusion (VA/Q) ratio. COVID-19-associated ARDS is more vascular centric than the other types of ARDS. D-dimer levels have been monitored for the progression of microvascular thrombosis in COVID-19 patients. Early anticoagulation therapy in critical patients with high D-dimer levels may improve prognosis, including the prevention and/or alleviation of ARDS. CONCLUSIONS: Right-to-left shunts and high VA/Q ratios caused by lung microvascular thrombosis contribute to hypoxemia in type H and L ARDS, respectively. D-dimer monitoring-based anticoagulation therapy may prevent the progression to and/or worsening of ARDS in COVID-19 patients.


Subject(s)
COVID-19/physiopathology , Hemostasis/physiology , Hypoxia/physiopathology , Respiratory Distress Syndrome/physiopathology , Thrombosis/physiopathology , Anticoagulants/therapeutic use , Biomarkers/blood , Blood Platelets/metabolism , Extracellular Traps/metabolism , Fibrin/metabolism , Fibrin Fibrinogen Degradation Products/analysis , Fibrinolysis , Humans , Lung/blood supply , Microvessels/physiopathology , Phenotype , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2 , Thromboinflammation/physiopathology , Thrombosis/drug therapy , COVID-19 Drug Treatment
18.
Macromol Biosci ; 23(4): e2200479, 2023 04.
Article in English | MEDLINE | ID: covidwho-2173286

ABSTRACT

The artificial lung has provided life-saving support for pulmonary disease patients and recently afforded patients with severe cases of COVID-19 better prognostic outcomes. While it addresses a critical medical need, reducing the risk of clotting inside the device remains challenging. Herein, a two-step surface coating process of the lung circuit using Zwitterionic polysulfobetaine methacrylate is evaluated for its nonspecific protein antifouling activity. It is hypothesized that similarly applied coatings on materials integrated (IT) or nonintegrated (NIT) into the circuit will yield similar antifouling activity. The effects of human plasma preconditioned with nitric oxide-loaded liposome on platelet (plt) fouling are also evaluated. Fibrinogen antifouling activities in coated fibers are similar in the IT and NIT groups. It however decreases in coated polycarbonate (PC) in the IT group. Also, plt antifouling activity in coated fibers is similar in the IT and NIT groups and is lower in coated PC and Tygon in the IT group compared to the NIT group. Coating process optimization in the IT lung circuit may help address difference in the coating appearance of outer and inner fiber bundle fibers, and the NO-liposome significantly reduces (86%) plt fouling on fibers indicating its potential use for blood anticoagulation.


Subject(s)
COVID-19 , Liposomes , Humans , Liposomes/metabolism , COVID-19/metabolism , Blood Platelets/metabolism , Lung , Adsorption
19.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2143241

ABSTRACT

A state of immunothrombosis has been reported in COVID-19. Platelets actively participate in this process. However, little is known about the ability of SARS-CoV-2 virus proteins to induce platelet activity. Platelet-rich plasma (PRP) was incubated with spike full-length protein and the RBD domain in independent assays. We evaluated platelet activation through the expression of P-selectin and activation of glicoprotein IIbIIIa (GP IIbIIIa), determined by flow cytometry and the ability of the proteins to induce platelet aggregation. We determined concentrations of immunothrombotic biomarkers in PRP supernatant treated with the proteins. We determined that the spike full-length proteins and the RBD domain induced an increase in P-selectin expression and GP IIbIIIa activation (p < 0.0001). We observed that the proteins did not induce platelet aggregation, but favored a pro-aggregating state that, in response to minimal doses of collagen, could re-establish the process (p < 0.0001). On the other hand, the viral proteins stimulated the release of interleukin 6, interleukin 8, P-selectin and the soluble fraction of CD40 ligand (sCD40L), molecules that favor an inflammatory state p < 0.05. These results indicate that the spike full-length protein and its RBD domain can induce platelet activation favoring an inflammatory phenotype that might contribute to the development of an immunothrombotic state.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Blood Platelets/metabolism , COVID-19/metabolism , Platelet Activation , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Protein Domains
20.
Int J Mol Sci ; 23(22)2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2116210

ABSTRACT

Coronavirus disease-19 (COVID-19) patients are prone to thrombotic complications that may increase morbidity and mortality. These complications are thought to be driven by endothelial activation and tissue damage promoted by the systemic hyperinflammation associated with COVID-19. However, the exact mechanisms contributing to these complications are still unknown. To identify additional mechanisms contributing to the aberrant clotting observed in COVID-19 patients, we analyzed platelets from COVID-19 patients compared to those from controls using mass spectrometry. We identified increased serum amyloid A (SAA) levels, an acute-phase protein, on COVID-19 patients' platelets. In addition, using an in vitro adhesion assay, we showed that healthy platelets adhered more strongly to wells coated with COVID-19 patient serum than to wells coated with control serum. Furthermore, inhibitors of integrin aIIbß3 receptors, a mediator of platelet-SAA binding, reduced platelet adhesion to recombinant SAA and to wells coated with COVID-19 patient serum. Our results suggest that SAA may contribute to the increased platelet adhesion observed in serum from COVID-19 patients. Thus, reducing SAA levels by decreasing inflammation or inhibiting SAA platelet-binding activity might be a valid approach to abrogate COVID-19-associated thrombotic complications.


Subject(s)
COVID-19 , Thrombosis , Humans , Serum Amyloid A Protein/metabolism , COVID-19/complications , Platelet Adhesiveness , Blood Platelets/metabolism , Thrombosis/etiology , Thrombosis/metabolism , Integrins/metabolism , Tissue Adhesions
SELECTION OF CITATIONS
SEARCH DETAIL